Abstract
Actor-critic (AC) cooperative multiagent reinforcement learning (MARL) over directed graphs is studied in this article. The goal of the agents in MARL is to maximize the globally averaged return in a distributed way, i.e., each agent can only exchange information with its neighboring agents. AC methods proposed in the literature require the communication graphs to be undirected and the weight matrices to be doubly stochastic (more precisely, the weight matrices are row stochastic and their expectation are column stochastic). Differently from these methods, we propose a distributed AC algorithm for MARL over directed graph with fixed topology that only requires the weight matrix to be row stochastic. Then, we also study the MARL over directed graphs (possibly not connected) with changing topologies, proposing a different distributed AC algorithm based on the push-sum protocol that only requires the weight matrices to be column stochastic. Convergence of the proposed algorithms is proven for linear function approximation of the action value function. Simulations are presented to demonstrate the effectiveness of the proposed algorithms.
Original language | English |
---|---|
Pages (from-to) | 7210-7221 |
Journal | IEEE Transactions on Neural Networks and Learning Systems |
Volume | 34 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Approximation algorithms
- Convergence
- Directed graph
- Directed graphs
- distributed actor-critic (AC) algorithm
- Function approximation
- multiagent reinforcement learning (MARL)
- Protocols
- push-sum protocol.
- Q-learning
- Topology