Abstract
The privatization of distribution systems has resulted in the development of multiple-microgrid (multiple-MG) systems where each microgrid independently operates its local resources. Moreover, the high integration of independent distributed energy sources could lead to operational issues such as grid congestion in future distribution systems. Therefore, this paper provides a transactive-based energy management framework to operate multiple-MG distribution systems; while, alleviating grid congestion in a decentralized manner. In this respect, alternating direction method of multipliers (ADMM) is considered to develop an operational framework that copes with distributed nature of multiple-MG systems. In this context, a novel procedure in the context of ADMM is proposed to distributedly determine transactive coordinator signals which address energy prices as well as power losses and grid congestions. Furthermore, each MG takes into account stochastic programming and the conditional value-at-risk index to handle the uncertainty of its operational scheduling. At last, the proposed framework is applied on IEEE 37-bus and 123-bus test grids to investigate its efficacy in distributed energy management of multiple-MG systems.
Original language | English |
---|---|
Article number | 9650556 |
Pages (from-to) | 1335-1346 |
Number of pages | 12 |
Journal | IEEE Transactions on Smart Grid |
Volume | 13 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Congestion alleviation
- distribution grid
- multiple-microgrid system
- responsive local resources
- transactive coordinator signal