Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator

Viet Anh Nguyen, Daniel Kuhn, Peyman Mohajerin Esfahani

Research output: Contribution to journalArticleScientificpeer-review

8 Downloads (Pure)

Abstract

We introduce a distributionally robust maximum likelihood estimation model with a Wasserstein ambiguity set to infer the inverse covariance matrix of a p-dimensional Gaussian random vector from n independent samples. The proposed model minimizes the worst case (maximum) of Stein’s loss across all normal reference distributions within a prescribed Wasserstein distance from the normal distribution characterized by the sample mean and the sample covariance matrix. We prove that this estimation problem is equivalent to a semidefinite program that is tractable in theory but beyond the reach of general-purpose solvers for practically relevant problem dimensions p. In the absence of any prior structural information, the estimation problem has an analytical solution that is naturally interpreted as a nonlinear shrinkage estimator. Besides being invertible and well conditioned even for p > n, the new shrinkage estimator is rotation equivariant and preserves the order of the eigenvalues of the sample covariance matrix. These desirable properties are not imposed ad hoc but emerge naturally from the underlying distributionally robust optimization model. Finally, we develop a sequential quadratic approximation algorithm for efficiently solving the general estimation problem subject to conditional independence constraints typically encountered in Gaussian graphical models.

Original languageEnglish
Pages (from-to)490-515
JournalOperations Research
Volume70
Issue number1
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Data-driven optimization
  • Distributionally robust optimization
  • Maximum likelihood estimation
  • Shrinkage estimator
  • Wasserstein distance

Fingerprint

Dive into the research topics of 'Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator'. Together they form a unique fingerprint.

Cite this