Do coherent structures organize scalar mixing in a turbulent boundary layer?

Jerke Eisma*, Jerry Westerweel, Willem Van De Water

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)
50 Downloads (Pure)


A scalar emanating from a point source in a turbulent boundary layer does not mix homogeneously, but is organized in large regions with little variation of the concentration: uniform concentration zones. We measure scalar concentration using laser-induced fluorescence and, simultaneously, the three-dimensional velocity field using tomographic particle image velocimetry in a water tunnel boundary layer. We identify uniform concentration zones using both a simple histogram technique, and more advanced cluster analysis. From the complete information on the turbulent velocity field, we compute two candidate velocity structures that may form the boundaries between two uniform concentration zones. One of these structures is related to the rate of point separation along Lagrangian trajectories and the other one involves the magnitude of strong shear in snapshots of the velocity field. Therefore, the first method allows for the history of the flow field to be monitored, while the second method only looks at a snapshot. The separation of fluid parcels in time was measured in two ways: The exponential growth of the separation as time progresses (related to finite-Time Lyapunov exponents and unstable manifolds in the theory of dynamical systems), and the exponential growth as time moves backward (stable manifolds). Of these two, a correlation with the edges of uniform concentration zones was found for the past Lyapunov field but not with the time-forward future field. The magnitude of the correlation is comparable to that of the regions of strong shear in the instantaneous velocity field.

Original languageEnglish
Article numberA226
Number of pages19
JournalJournal of Fluid Mechanics
Publication statusPublished - 2021


  • turbulent boundary layers
  • turbulent mixing

Cite this