Doping on Demand: Permanent electrochemical doping of colloidal quantum dots and organic semiconductors

S. Gudjónsdóttir

Research output: ThesisDissertation (TU Delft)

80 Downloads (Pure)

Abstract

Control over the charge carrier density of semiconductor materials is essential for various electronic devices. Unfortunately, common electronic doping methods have not always been successful for new generations of semiconductors, such as organic semiconductors and colloidal quantum dots. Therefore, a new doping method that offers a great control over the charge carrier density is needed. Electrochemistry is a powerful way of doping porous semiconductor films, where the charge carrier density can be controlled by a button on a potentiostat. Unfortunately, when the semiconductor film is disconnected from the potentiostat, injected charges leave the film. The work performed in this thesis is aimed to understand electrochemical doping and the instability with the final goal of producing stable electrochemically doped semiconductor films at room temperature for the use in devices.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Delft University of Technology
Supervisors/Advisors
  • Houtepen, A.J., Supervisor
  • Savenije, T.J., Supervisor
Award date8 Oct 2020
Electronic ISBNs978-94-6332-667-4
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Doping on Demand: Permanent electrochemical doping of colloidal quantum dots and organic semiconductors'. Together they form a unique fingerprint.

Cite this