Down to the root of vegetated soil: challenges and the state-of-the-art

Hongyang Cheng, Floriana Anselmucci, Xinyan Fan, Yijian Zeng, Stefan Luding, Vanessa Magnanimo

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Vegetated soil plays an essential role in confronting climate change. Soil, together with its ecosystem, stores vast amounts of carbon; it is also the construction material most widely used for the built environment. The expected impacts of climate change, such as extreme wetting-drying cycles, pose an urgent need to understand the interplay between soil deformation, root growth, and water/solute uptake. The key to this challenge lies in the extension of unsaturated soil mechanics to incorporate bio-hydrological processes, such as root growth and water uptake. In this paper, we first provide an overview of the state-of-the-art knowledge of root-zone mechanics and bio-hydrology. We identify the main knowledge gaps and suggest an integrated, bottom-to-top approach to develop a multidisciplinary understanding of soil-water-root interaction. We explain how emerging experimental and numerical methods can be used to study rooted soil under wetting–drying cycles. We focus on the biophysical processes at the scale of plant roots, soil particles and their interfaces, and discuss potential up-scaling to the continuum/field scale. An outlook on possible further research involves effects of temperature and microbial activities.

Original languageEnglish
Article number140014
Number of pages20
JournalPapers in physics
Volume14
DOIs
Publication statusPublished - 2022
Externally publishedYes

Keywords

  • Granular materials
  • Root-soil-water interaction
  • Root-zone hydrology
  • Fiber-reinforced soil
  • Unsaturated soil
  • Root system architecture

Fingerprint

Dive into the research topics of 'Down to the root of vegetated soil: challenges and the state-of-the-art'. Together they form a unique fingerprint.

Cite this