Downscaling of Airborne Wind Energy Systems

Uwe Fechner, Roland Schmehl

Research output: Contribution to journalConference articleScientificpeer-review

1 Citation (Scopus)
39 Downloads (Pure)

Abstract

Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that can not be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling e
ects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less then 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.
Original languageEnglish
Number of pages10
JournalJournal of Physics: Conference Series
Volume753
DOIs
Publication statusPublished - 2016
EventTORQUE 2016: 6th International Conference "The Science of Making Torque from Wind" - Technische Universität München (TUM), Campus Garching, Munich, Germany
Duration: 5 Oct 20167 Oct 2016
https://www.events.tum.de/?sub=29

Fingerprint

Dive into the research topics of 'Downscaling of Airborne Wind Energy Systems'. Together they form a unique fingerprint.

Cite this