Drinking Water Microbial Communities

Joline El Chakhtoura

Research output: ThesisDissertation (TU Delft)

16 Citations (Scopus)
192 Downloads (Pure)

Abstract

Water crises are predicted to be amongst the risks of highest concern for the next ten years, due to availability, accessibility, quality and management issues. Knowledge of the microbial communities indigenous to drinking water is essential for treatment and distribution process control, risk assessment and infrastructure design. Drinking water distribution systems (DWDSs) ideally should deliver to the consumer water of the same microbial quality as that leaving a treatment plant (“biologically stable” according to WHO). At the start of this Ph.D. program water microbiology comprised conventional culture dependent methods, and no studies were available on microbial communities from source to tap. A method combining 16S rRNA gene pyrosequencing with flow cytometry was developed to accurately detect, characterize, and enumerate the microorganisms found in a water sample. Studies were conducted in seven full-scale Dutch DWDSs which transport low-AOC water without disinfectant residuals, produced from fresh water applying conventional treatment. Full-scale studies were also conducted at the desalination plant and DWDS of KAUST, Saudi Arabia where drinking water is produced from seawater applying RO membrane treatment and then transported with chlorine residual. Furthermore, biological stability was evaluated in a wastewater reuse application in the Netherlands. When low-AOC water was distributed without disinfectant residuals, greater bacterial richness was detected in the networks, however, temporal and spatial variations in the bacterial community were insignificant and a substantial fraction of the microbiome was still shared between the treated and transported 10 water. This shared fraction was lower in the system transporting water with chlorine residual, where the eukaryotic community changed with residence time. The core microbiome was characterized and dominant members varied between the two systems. Biofilm and deposit-associated communities were found to drive tap water microbiology regardless of water source and treatment scheme. Network flushing was found to be a simple method to assess water microbiology. Biological stability was not associated with safety. The biological stability concept needs to be revised and quantified. Further research is needed to understand microbial functions and processes, how water communities affect the human microbiome, and what the “drinking” water microbiome is like in undeveloped countries.
Original languageEnglish
Awarding Institution
  • Delft University of Technology
Supervisors/Advisors
  • Vrouwenvelder, J.S., Supervisor
  • van Loosdrecht, M.C.M., Supervisor
  • Saikaly, Pascal E., Supervisor, External person
Award date8 Nov 2018
Print ISBNs978-94-6186-988-3
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Drinking Water Microbial Communities'. Together they form a unique fingerprint.

Cite this