Driving risk classification methodology for intelligent drive in real traffic event

Chuan Sun, Bijun Li, Yicheng Li, Zhenji Lu

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
18 Downloads (Pure)

Abstract

To solve the problem that existing driving data cannot correlate to the large number of vehicles in terms of driving risks, is the functionality of intelligent driving algorithm should be improved. This paper deeply explores driving data to build a link between massive driving data and a large number of sample vehicles for driving risk analysis. It sorted out certain driving behavior parameters in the driving data, and extracted some parameters closely related to the driving risk; it further utilized the principal component analysis and factor analysis in spatio-temporal data to integrate certain extracted parameters into factors that are clearly related to the specific driving risks; then, it selected factor scores of driving behaviors as indexes for hierarchical clustering, and obtained multi-level clustering results of the driving risks of corresponding vehicles; in the end, it interpreted the clustering results of the vehicle driving risks. According to the results, it is found that cluster for different risks proposed in this paper for driving behaviors is effective in the hierarchical cluster for typical driving behaviors and it also offers a solution for risk analyses between driving data and large sample vehicles. The results provide the basis for training on safe driving for the key vehicles, and the improvement of advanced driver assistance system, which shows a wide application prospect in the field of intelligent drive.

Original languageEnglish
Article number1950014
Number of pages20
JournalInternational Journal of Pattern Recognition and Artificial Intelligence
Volume33
Issue number9
DOIs
Publication statusPublished - 2019

Keywords

  • classification methodology
  • driving data
  • intelligent drive
  • Vehicle driving risk

Fingerprint Dive into the research topics of 'Driving risk classification methodology for intelligent drive in real traffic event'. Together they form a unique fingerprint.

Cite this