Dual-band leaky-wave lens antenna for submillimeter-wave heterodyne instruments

Sjoerd Bosma*, Maria Alonso-Delpino, Darwin Blanco, Cecile Jung-Kubiak, Nuria Llombart

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

43 Downloads (Pure)

Abstract

In this contribution, we propose an antenna for a dual-band focal plane array (FPA) heterodyne receiver at 210-240 GHz and 500-580 GHz to perform cometary observations. The proposed antenna is composed of a fused silica lens fed by a leaky wave waveguide feed. The dual-band leaky wave feed is based on a single-layer Frequency Selective Surface (FSS) with a transformer layer which allows to have a quasi-optical system that achieves a footprint of the field of view with overlapped beams and equal beamwidths for both frequency bands. A single pixel antenna prototype is currently being developed.

Original languageEnglish
Title of host publicationIRMMW-THz 2019 - 44th International Conference on Infrared, Millimeter, and Terahertz Waves
PublisherIEEE
Number of pages2
Volume2019-September
ISBN (Electronic)9781538682852
DOIs
Publication statusPublished - 2019
Event44th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2019 - Paris, France
Duration: 1 Sept 20196 Sept 2019

Conference

Conference44th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2019
Country/TerritoryFrance
CityParis
Period1/09/196/09/19

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Dual-band leaky-wave lens antenna for submillimeter-wave heterodyne instruments'. Together they form a unique fingerprint.

Cite this