Dual-scale visualization of resin flow for liquid composite molding processes

Helena Teixidó, Baris Caglar, Véronique Michaud

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

14 Downloads (Pure)

Abstract

Visualization of resin flow progression through fibrous preforms is often sought to elucidate flow patterns and validate models for filling prediction for liquid composite molding processes. Here, conventional X-ray radiography is compared to X-ray phase contrast technique to image in-situ constant flow rate impregnation of a non-translucent unidirectional carbon fabric. X-ray attenuation of the fluid phase was increased by using a ZnI2-based contrasting agent, leading to enough contrast between the liquid and the low density fibers. We proved the suitability of conventional X-ray transmission to visualize fluid paths by elucidating different flow patterns, spanning from capillary to viscous regimes and a macro-void entrapment phenomenon
Original languageEnglish
Title of host publicationProceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability
Subtitle of host publicationVol 2 – Manufacturing
EditorsAnastasios P. Vassilopoulos, Véronique Michaud
Place of PublicationLausanne
PublisherEPFL Lausanne, Composite Construction Laboratory
Pages1013-1020
Number of pages8
ISBN (Electronic)978-2-9701614-0-0
Publication statusPublished - 2022
Event20th European Conference on Composite Materials: Composites Meet Sustainability - Lausanne, Switzerland
Duration: 26 Jun 202230 Jun 2022
Conference number: 20

Conference

Conference20th European Conference on Composite Materials
Abbreviated titleECCM20
Country/TerritorySwitzerland
CityLausanne
Period26/06/2230/06/22

Keywords

  • Liquid Composite Molding (LCM)
  • Resin flow
  • Saturation curve
  • Process monitoring; X-ray imaging

Fingerprint

Dive into the research topics of 'Dual-scale visualization of resin flow for liquid composite molding processes'. Together they form a unique fingerprint.

Cite this