Dust as interstellar catalyst: II. How chemical desorption impacts the gas

S. Cazaux, M. Minissale, Francois Dulieu, S. Hocuk

Research output: Contribution to journalArticleScientificpeer-review

22 Citations (Scopus)

Abstract

Context. Interstellar dust particles, which represent 1% of the total mass, are recognized to be very powerful interstellar catalysts in star-forming regions. The presence of dust can have a strong impact on the chemical composition of molecular clouds. While observations show that many species that formed onto dust grains populate the gas phase, the process that transforms solid state into gas phase remains unclear. Aims. The aim of this paper is to consider the chemical desorption process, i.e. the process that releases solid species into the gas phase, in astrochemical models. These models allow determining the chemical composition of star-forming environments with an accurate treatment of the solid-phase chemistry. Methods. In paper I we derived a formula based on experimental studies with which we quantified the efficiencies of the chemical desorption process. Here we extend these results to astrophysical conditions. Results. The simulations of astrophysical environments show that the abundances of gas-phase methanol and H2O2 increase by four orders of magnitude, whereas gas-phase H2CO and HO2 increase by one order of magnitude when the chemical desorption process is taken into account. The composition of the ices strongly varies when the chemical desorption is considered or neglected. Conclusions. We show that the chemical desorption process, which directly transforms solid species into gas-phase species, is very efficient for many reactions. Applied to astrophysical environments such as ρ Oph A, we show that the chemical desorption efficiencies derived in this study reproduce the abundances of observed gas-phase methanol, HO2, and H2O2, and that the presence of these molecules in the gas shows the last signs of the evolution of a cloud before the frost.

Original languageEnglish
Article numberA55
JournalAstronomy & Astrophysics
Volume585
DOIs
Publication statusPublished - 1 Jan 2016
Externally publishedYes

Keywords

  • Astrochemistry
  • ISM: clouds
  • ISM: molecules

Fingerprint Dive into the research topics of 'Dust as interstellar catalyst: II. How chemical desorption impacts the gas'. Together they form a unique fingerprint.

Cite this