Dynamic Frequency Support for Low Inertia Power Systems by Renewable Energy Hubs with Fast Active Power Regulation

José Rueda Torres, Nidarshan Veera Kumar, Elyas Rakhshani, Zameer Ahmad, Ebrahim Adabi, Peter Palensky, Mart van der Meijden

Research output: Contribution to journalArticleScientificpeer-review

27 Downloads (Pure)

Abstract

This paper concerns the feasibility of Fast Active Power Regulation (FAPR) in renewable energy hubs. Selected state-of-the-art FAPR strategies are applied to various controllable devices within a hub, such as a solar photovoltaic (PV) farm and an electrolyzer acting as a responsive load. Among the selected strategies are droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. The FAPR-supported hub is interconnected with a test transmission network, modeled and simulated in a real-time simulation electromagnetic transient (EMT) environment to study a futuristic operating condition of the high-voltage infrastructure covering the north of the Netherlands. The real-time EMT simulations show that the FAPR strategies (especially the VSP-based FAPR) can successfully help to significantly and promptly limit undesirable large instantaneous frequency deviations.
Original languageEnglish
Article number1651
Pages (from-to)1-10
Number of pages10
JournalEnergies
Volume10
Issue number14
DOIs
Publication statusPublished - 2021

Keywords

  • Electrolyzers
  • Fast active power regulation
  • Fast frequency control
  • Renewable energy hubs
  • Renewable power generation

Fingerprint

Dive into the research topics of 'Dynamic Frequency Support for Low Inertia Power Systems by Renewable Energy Hubs with Fast Active Power Regulation'. Together they form a unique fingerprint.

Cite this