Dynamics of postcombustion CO2 capture plants: Modeling, validation, and case study

Adam van de Haar, C. Trapp, Kai Wellner, Robert De Kler, Gerhard Schmitz, Piero Colonna*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Citations (Scopus)
62 Downloads (Pure)


The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant.

Original languageEnglish
Pages (from-to)1810-1822
JournalIndustrial and Engineering Chemistry Research
Issue number7
Publication statusPublished - 2017


Dive into the research topics of 'Dynamics of postcombustion CO2 capture plants: Modeling, validation, and case study'. Together they form a unique fingerprint.

Cite this