Secondary instabilities in swept-wing boundary layers: Direct Numerical Simulations and BiGlobal stability analysis

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

5 Citations (Scopus)
154 Downloads (Pure)

Abstract

The evolution of secondary instabilities in a three-dimensional stationary-crossflow-domina- ted boundary layer is investigated by means of Direct Numerical Simulations (DNS) and linear spanwise BiGlobal stability analysis. Single-frequency unsteady disturbances and a critical stationary crossflow mode are considered. Unsteady perturbation content at 1 kHz manifests in the form of the type-III secondary instability mechanism in the lower portion of the boundary layer in the both the DNS and the stability approach. Considering disturbances at 6 kHz, the results from the stability analysis reveal the existence of largely amplified type-I and type-II secondary instability mechanisms. Strong growth displayed by the former is measured in the DNS, which potentially overshadows manifestations of the type-II mechanism. Laminar- turbulent transition primarily induced by the growth of type-I disturbances is captured in the 6 kHz case. Overall, we report good agreement between DNS and stability analysis in terms of perturbation organization and growth rate for all cases studied.
Original languageEnglish
Title of host publicationAIAA SCITECH 2022 Forum
Number of pages24
ISBN (Electronic)978-1-62410-631-6
DOIs
Publication statusPublished - 2022
EventAIAA SCITECH 2022 Forum - virtual event
Duration: 3 Jan 20227 Jan 2022

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Conference

ConferenceAIAA SCITECH 2022 Forum
Period3/01/227/01/22

Fingerprint

Dive into the research topics of 'Secondary instabilities in swept-wing boundary layers: Direct Numerical Simulations and BiGlobal stability analysis'. Together they form a unique fingerprint.

Cite this