TY - JOUR
T1 - Effect of dislocation core fields on discrete dislocation plasticity
AU - Irani, Nilgoon
AU - Murugesan, Yaswanth
AU - Ayas, Can
AU - Nicola, Lucia
PY - 2022
Y1 - 2022
N2 - Discrete dislocation plasticity is a modeling technique that treats plasticity as the collective motion of dislocations. The dislocations are described through their elastic Volterra fields, outside of a cylindrical core region, with a few Burgers vectors of diameter. The contribution of the core fields to the dislocation dynamics is neglected, because it is assumed that their range is too short to be of influence. The aim of this work is to assess the validity of this assumption. In recent ab-initio studies it has been demonstrated that the dislocation core fields are significant up to a distance of ten Burgers vector from the dislocation line. This is a longer range influence than expected and can give rise to changes in the evolving dislocation structure and in the overall response of a plastically deforming body. It is indeed experimentally observed that dislocations pile up against strong interfaces, and that the spacing between dislocations at the front of these pile-ups can be less than ten Burgers vectors. In this work, 2-D discrete dislocation plasticity simulations are performed to investigate the effect of core fields on edge dislocation interactions. The results of the simulations, which include core fields for the first time, show indeed that dislocations that are very closely spaced experience additional glide or climb due to core fields. The effect is however negligible when compared to glide and climb due to Volterra fields or due to the external load.
AB - Discrete dislocation plasticity is a modeling technique that treats plasticity as the collective motion of dislocations. The dislocations are described through their elastic Volterra fields, outside of a cylindrical core region, with a few Burgers vectors of diameter. The contribution of the core fields to the dislocation dynamics is neglected, because it is assumed that their range is too short to be of influence. The aim of this work is to assess the validity of this assumption. In recent ab-initio studies it has been demonstrated that the dislocation core fields are significant up to a distance of ten Burgers vector from the dislocation line. This is a longer range influence than expected and can give rise to changes in the evolving dislocation structure and in the overall response of a plastically deforming body. It is indeed experimentally observed that dislocations pile up against strong interfaces, and that the spacing between dislocations at the front of these pile-ups can be less than ten Burgers vectors. In this work, 2-D discrete dislocation plasticity simulations are performed to investigate the effect of core fields on edge dislocation interactions. The results of the simulations, which include core fields for the first time, show indeed that dislocations that are very closely spaced experience additional glide or climb due to core fields. The effect is however negligible when compared to glide and climb due to Volterra fields or due to the external load.
KW - Dislocation climb
KW - Dislocation core
KW - Dislocation dynamics
KW - Plasticity
UR - http://www.scopus.com/inward/record.url?scp=85120611196&partnerID=8YFLogxK
U2 - 10.1016/j.mechmat.2021.104137
DO - 10.1016/j.mechmat.2021.104137
M3 - Article
AN - SCOPUS:85120611196
SN - 0167-6636
VL - 165
JO - Mechanics of Materials
JF - Mechanics of Materials
M1 - 104137
ER -