TY - JOUR
T1 - Effect of lateral reinforcements on the adhesion and friction of micropillar adhesives
AU - van Assenbergh, Peter
AU - Zhang, Kai
AU - Buijnsters, Josephus G.
AU - Dodou, Dimitra
PY - 2020
Y1 - 2020
N2 - Micropillar adhesives have gained increasing attention because they generate high pull-off forces. The generation of high friction, however, has been proven difficult with such geometries, because micropillars tend to buckle under shear loading. Here, we fabricated orthogonal arrays of composite poly-dimethoxysiloxane (PDMS) micropillars with a stiff core and spin-coated them with PDMS solutions to form a soft coating, as well as bridges between neighboring micropillars. We used 10 wt% and 5 wt% PDMS solution to obtain thick or thin bridges, respectively. The micropillars had an average height of about 60 µm and a diameter of 40 µm. Adhesion and friction measurements were performed with three types of adhesives (i.e., without bridges and with either thin or thick bridges) as well as unpatterned samples as reference, on stiff glass substrates and on deformable PDMS substrates. We found that, on PDMS substrates, bridging resulted in increased friction, compared to non-bridged micropillars. Friction increased with increasing bridge thickness, presumably due to buckling prevention. The adhesives were also subjected to 99 repeating friction cycles to test the effect of micropillar bridging on the durability of the adhesives. The results showed that adhesives with thick micropillar bridges preserved their friction performance over the cycles, whereas adhesives with no bridges or thin bridges exhibited a gradual decay of friction.
AB - Micropillar adhesives have gained increasing attention because they generate high pull-off forces. The generation of high friction, however, has been proven difficult with such geometries, because micropillars tend to buckle under shear loading. Here, we fabricated orthogonal arrays of composite poly-dimethoxysiloxane (PDMS) micropillars with a stiff core and spin-coated them with PDMS solutions to form a soft coating, as well as bridges between neighboring micropillars. We used 10 wt% and 5 wt% PDMS solution to obtain thick or thin bridges, respectively. The micropillars had an average height of about 60 µm and a diameter of 40 µm. Adhesion and friction measurements were performed with three types of adhesives (i.e., without bridges and with either thin or thick bridges) as well as unpatterned samples as reference, on stiff glass substrates and on deformable PDMS substrates. We found that, on PDMS substrates, bridging resulted in increased friction, compared to non-bridged micropillars. Friction increased with increasing bridge thickness, presumably due to buckling prevention. The adhesives were also subjected to 99 repeating friction cycles to test the effect of micropillar bridging on the durability of the adhesives. The results showed that adhesives with thick micropillar bridges preserved their friction performance over the cycles, whereas adhesives with no bridges or thin bridges exhibited a gradual decay of friction.
KW - Adhesion
KW - Friction
KW - Micropillar adhesives
KW - Reinforced adhesives
UR - http://www.scopus.com/inward/record.url?scp=85091003143&partnerID=8YFLogxK
U2 - 10.1007/s00339-020-03947-y
DO - 10.1007/s00339-020-03947-y
M3 - Article
AN - SCOPUS:85091003143
VL - 126
JO - Applied Physics A: materials science & processing
JF - Applied Physics A: materials science & processing
SN - 0947-8396
IS - 10
M1 - 790
ER -