TY - JOUR
T1 - Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen
T2 - A laboratory batch study
AU - Wang, Feifei
AU - van Halem, Doris
AU - Liu, Gang
AU - Lekkerkerker-Teunissen, Karin
AU - van der Hoek, Jan Peter
PY - 2017
Y1 - 2017
N2 - H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H2O2 lowered DOC removal by 10% while higher H2O2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H2O2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H2O2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H2O2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H2O2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H2O2 but conversely less diverse when the dosage increased to 5 mg/L H2O2. Anaerobic bacteria were found to be most sensitive to H2O2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H2O2 (17–88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H2O2 concentration should be properly evaluated.
AB - H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H2O2 lowered DOC removal by 10% while higher H2O2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H2O2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H2O2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H2O2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H2O2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H2O2 but conversely less diverse when the dosage increased to 5 mg/L H2O2. Anaerobic bacteria were found to be most sensitive to H2O2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H2O2 (17–88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H2O2 concentration should be properly evaluated.
KW - Advanced oxidation processes
KW - Hydrogen peroxide
KW - Sand systems
KW - Water treatment
KW - Microbial community
UR - http://resolver.tudelft.nl/uuid:af81ff69-3827-41d5-900b-e1e543111d9f
U2 - 10.1016/j.chemosphere.2017.07.073
DO - 10.1016/j.chemosphere.2017.07.073
M3 - Article
SN - 0045-6535
VL - 185
SP - 637
EP - 646
JO - Chemosphere
JF - Chemosphere
ER -