Effect of uncertainties in geometry, inter-layer boundary and shear strength properties on the probabilistic stability of a 3D embankment slope

Divya Varkey, Michael A. Hicks*, Philip J. Vardon

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
34 Downloads (Pure)

Abstract

This paper investigates the influence of three forms of uncertainty on the probabilistic stability of an idealised 3D embankment slope. These are: 1D spatial variability in the external geometry of the slope along its length, 2D spatial variability in the depth of the boundary between the embankment material and the foundation layer, and 3D spatial variability in the shear strength properties of the slope and foundation materials. The relative influence of each uncertainty has been investigated using the random finite element method, based on statistics consistent with a Dutch regional dyke. The results indicate that, for such a structure, the soil spatial variability has a much greater influence than uncertainties relating to embankment geometry and inter-layer boundary. In particular, it is demonstrated that the spatial correlation of material properties along the length of the embankment has a greater influence on the probabilistic characteristics of the embankment slope stability and failure consequence than the spatial correlation of properties perpendicular to it. A worst case scale of fluctuation for the material properties is identified.

Original languageEnglish
Pages (from-to)262-276
Number of pages15
JournalGeorisk
Volume17
Issue number2
DOIs
Publication statusPublished - 2022

Keywords

  • Geometry
  • random finite element method
  • slope stability
  • spatial variability
  • three dimensional

Fingerprint

Dive into the research topics of 'Effect of uncertainties in geometry, inter-layer boundary and shear strength properties on the probabilistic stability of a 3D embankment slope'. Together they form a unique fingerprint.

Cite this