Effects of pore-throat structure on gas permeability in the tight sandstone reservoirs of the Upper Triassic Yanchang formation in the Western Ordos Basin, China

Hexin Huang, Wei Sun, Wenming Ji, Ronghui Zhang, Kun Du, Shaohua Zhang, Dazhong Ren, Youwei Wang, Lei Chen, Xi Zhang

Research output: Contribution to journalArticleScientificpeer-review

37 Citations (Scopus)

Abstract

The effects of pore throat structure on gas permeability in tight sand reservoir were investigated using helium-measured porosity, pulse decay permeability, casting thin sections, scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and constant-rate mercury injection for five sandstone samples from the Upper Triassic Yanchang Formation in the Western Ordos Basin, China. Results show that permeability values are in the range of 0.474-2.290 mD. The strong variation may be due to the effect of mineral composition and pore-throat structure. Generally, sandstone samples of higher content of quartz, chlorite film, and slit-shaped throat tend to have higher permeability. The movable fluid porosity numerically equals to the product of porosity and the movable fluid saturation based on the film bound water, which can comprehensively reflect the influence of fluid flow channels on porosity while neglecting the influence of bound fluids in the fine pores of clay minerals in the tight reservoirs. Larger movable fluid porosity values mean larger pore spaces for the movable fluids, which contribute to larger permeability. It is more reasonable to analyze the movable fluid pore-throat radius as a range. The homogeneous pore throat structure lead to a narrow lower limit range of the movable fluid pore-throat radius, which is favorable for the fluid flow. Meanwhile, if the lower bound of the lower limit range of the movable fluid pore-throat radius is small, pores and throats are less plugged, and thus make the conditions favorable for fluid flow. The contribution of throats to the pore volume is critical in influencing reservoir permeability as it can directly control the lower limit of the movable fluid pore-throat size. The pore-throat radius where throats account for the smallest amount in the pore space increases with the permeability, which indicates that larger proportions of large throats result in larger throat radius and higher pore connectivity, leading to higher permeability.

Original languageEnglish
Pages (from-to)602-616
Number of pages15
JournalJournal of Petroleum Science and Engineering
Volume162
DOIs
Publication statusPublished - 2018

Keywords

  • Constant-rate mercury injection
  • Movable fluid porosity
  • Nuclear magnetic resonance
  • Permeability
  • Yanchang formation tight sandstone

Fingerprint Dive into the research topics of 'Effects of pore-throat structure on gas permeability in the tight sandstone reservoirs of the Upper Triassic Yanchang formation in the Western Ordos Basin, China'. Together they form a unique fingerprint.

Cite this