Abstract
Introducing elasticity in the mechanical design can endow robots with the ability of performing efficient and effective periodic motions. Yet, devising controllers that can take advantage of such elasticity is still an open challenge. This letter tackles an instance of this general problem, by proposing a control architecture for executing goal-oriented and efficient point-to-point periodic motions. This is achieved by (i) producing motor torques that excite intrinsic modal oscillations, and simultaneously (ii) adjusting parallel elasticity so to shape the natural modes. Analytical proofs of convergence are provided for the linear approximation. The performance and efficiency (in the sense of low energy expenditure) of the method in the nonlinear case are assessed with extensive simulations and experiments.
Original language | English |
---|---|
Pages (from-to) | 2555-2562 |
Journal | IEEE Robotics and Automation Letters |
Volume | 6 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Compliant Joints and Mechanisms
- Damping
- Mathematical model
- Motion Control
- Natural Machine Motion
- Oscillators
- Robot kinematics
- Robots
- Soft robotics
- Task analysis