TY - JOUR
T1 - Efficient estimation of space varying parameters in numerical models using non-intrusive subdomain reduced order modeling
AU - Xiao, Cong
AU - Leeuwenburgh, Olwijn
AU - Lin, Hai Xiang
AU - Heemink, Arnold
PY - 2021
Y1 - 2021
N2 - A reduced order modeling algorithm for the estimation of space varying parameter patterns in numerical models is proposed. In this approach domain decomposition is applied to construct separate approximations to the numerical model in every subdomain. We introduce a new local parameterization that decouples the computational cost of the algorithm from the number of global principal components and therefore provides attractive scaling for models with a very large number of uncertain parameter patterns. By defining uncertain parameter patterns only in the various subdomains the number of full order simulation required for the derivation of the reduced order models can be reduced drastically. To avoid non-smoothness at the boundaries of the subdomains, the optimal local parameters patterns are projected onto global parameter patterns. The computational effort of the new methodology hardly increases when the number of parameter patterns increases. The number of training models depends primarily on the maximum number of local parameters in a subdomain, which can be decreased by refining the domain decomposition. We apply the new algorithm to a large-scale reservoir model parameter estimation problem. In this application 282 parameters could be estimated using only 90 full order model runs.
AB - A reduced order modeling algorithm for the estimation of space varying parameter patterns in numerical models is proposed. In this approach domain decomposition is applied to construct separate approximations to the numerical model in every subdomain. We introduce a new local parameterization that decouples the computational cost of the algorithm from the number of global principal components and therefore provides attractive scaling for models with a very large number of uncertain parameter patterns. By defining uncertain parameter patterns only in the various subdomains the number of full order simulation required for the derivation of the reduced order models can be reduced drastically. To avoid non-smoothness at the boundaries of the subdomains, the optimal local parameters patterns are projected onto global parameter patterns. The computational effort of the new methodology hardly increases when the number of parameter patterns increases. The number of training models depends primarily on the maximum number of local parameters in a subdomain, which can be decreased by refining the domain decomposition. We apply the new algorithm to a large-scale reservoir model parameter estimation problem. In this application 282 parameters could be estimated using only 90 full order model runs.
KW - Adjoint model
KW - Domain decomposition
KW - Model reduction
KW - Parameter estimation
UR - http://www.scopus.com/inward/record.url?scp=85091952956&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2020.109867
DO - 10.1016/j.jcp.2020.109867
M3 - Article
AN - SCOPUS:85091952956
SN - 0021-9991
VL - 424
SP - 1
EP - 30
JO - Journal of Computational Physics
JF - Journal of Computational Physics
M1 - 109867
ER -