TY - JOUR
T1 - Efficient long-range conduction in cable bacteria through nickel protein wires
AU - Boschker, Henricus T.S.
AU - Cook, Perran L.M.
AU - Polerecky, Lubos
AU - Eachambadi, Raghavendran Thiruvallur
AU - Lozano, Helena
AU - Hidalgo-Martinez, Silvia
AU - Khalenkow, Dmitry
AU - Wang, Da
AU - Meysman, Filip J.R.
AU - More Authors, null
PY - 2021
Y1 - 2021
N2 - Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
AB - Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
UR - http://www.scopus.com/inward/record.url?scp=85109790725&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-24312-4
DO - 10.1038/s41467-021-24312-4
M3 - Article
C2 - 34183682
AN - SCOPUS:85109790725
VL - 12
SP - 3996
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 3996
ER -