Abstract
Recent developments in wearable devices have made accurate and efficient seizure detection more important than ever. A challenge in seizure detection is that patient-specific models typically outperform patient-independent models. However, in a wearable device one typically starts with a patient-independent model, until such patient-specific data is available. To avoid having to construct a new classifier with this data, as required in conventional kernel machines, we propose a transfer learning approach with a tensor kernel machine. This method learns the primal weights in a compressed form using the canonical polyadic decomposition, making it possible to efficiently update the weights of the patient-independent model with patient-specific data. The results show that this patient fine-tuned model reaches as high a performance as a patient-specific SVM model with a model size that is twice as small as the patient-specific model and ten times as small as the patient-independent model.
Original language | English |
---|---|
Title of host publication | Proceedings of the 32nd European Signal Processing Conference, EUSIPCO 2024 |
Publisher | European Signal Processing Conference, EUSIPCO |
Pages | 1372-1376 |
Number of pages | 5 |
ISBN (Electronic) | 978-9-4645-9361-7 |
DOIs | |
Publication status | Published - 2024 |
Event | 32nd European Signal Processing Conference, EUSIPCO 2024 - Lyon, France Duration: 26 Aug 2024 → 30 Aug 2024 https://eusipcolyon.sciencesconf.org/ |
Publication series
Name | European Signal Processing Conference |
---|---|
ISSN (Print) | 2219-5491 |
Conference
Conference | 32nd European Signal Processing Conference, EUSIPCO 2024 |
---|---|
Abbreviated title | EUSIPCO 2024 |
Country/Territory | France |
City | Lyon |
Period | 26/08/24 → 30/08/24 |
Internet address |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- kernel machine
- seizure detection
- tensors
- transfer learning