TY - JOUR
T1 - Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation
AU - Zheng, Kunpeng
AU - Lukovic, Mladena
AU - de Schutter, Geert
AU - Ye, Guang
AU - Taerwe, Luc
PY - 2016/9/1
Y1 - 2016/9/1
N2 - This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a chemically-idealized system of the alkali-silica reaction, was studied using nano-indentation. In addition, the corresponding calcium to silica mole ratio of the calcium alkali silicate was investigated. The results show that the elastic modulus of the calcium alkali silicate formed at the interface increased with the increase of the calcium to silica mole ratio and vice versa. Furthermore, the more calcium that was available for interaction with alkali silicate to form calcium alkali silicate, the higher the calcium to silica mole ratio and, consequently, the higher the elastic modulus of the formed calcium alkali silicate. This work provides illustrative evidence from a mechanical point of view on how the occurrence of cracks due to the alkali-silica reaction (ASR) is linked to the formation of the reaction rim. It has to be highlighted, however, that the simplified calcium-alkali-silicate system in this study is far from the real condition in concrete.
AB - This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a chemically-idealized system of the alkali-silica reaction, was studied using nano-indentation. In addition, the corresponding calcium to silica mole ratio of the calcium alkali silicate was investigated. The results show that the elastic modulus of the calcium alkali silicate formed at the interface increased with the increase of the calcium to silica mole ratio and vice versa. Furthermore, the more calcium that was available for interaction with alkali silicate to form calcium alkali silicate, the higher the calcium to silica mole ratio and, consequently, the higher the elastic modulus of the formed calcium alkali silicate. This work provides illustrative evidence from a mechanical point of view on how the occurrence of cracks due to the alkali-silica reaction (ASR) is linked to the formation of the reaction rim. It has to be highlighted, however, that the simplified calcium-alkali-silicate system in this study is far from the real condition in concrete.
KW - Alkali-silica reaction
KW - Calcium alkali silicate
KW - Elastic modulus
KW - Reaction rim
UR - http://www.scopus.com/inward/record.url?scp=84988884786&partnerID=8YFLogxK
UR - http://resolver.tudelft.nl/uuid:d1470dc8-261b-4baf-abad-1c62be967b0d
U2 - 10.3390/ma9090787
DO - 10.3390/ma9090787
M3 - Article
AN - SCOPUS:84988884786
VL - 9
SP - 1
EP - 17
JO - Materials
JF - Materials
SN - 1996-1944
IS - 9
M1 - ma9090787
ER -