TY - JOUR
T1 - Electrical Impedance Tomography as a monitoring tool during weaning from mechanical ventilation
T2 - an observational study during the spontaneous breathing trial
AU - Wisse, Jantine J.
AU - Goos, Tom G.
AU - Jonkman, Annemijn H.
AU - Somhorst, Peter
AU - Reiss, Irwin K.M.
AU - Endeman, Henrik
AU - Gommers, Diederik
PY - 2024
Y1 - 2024
N2 - Background: Prolonged weaning from mechanical ventilation is associated with poor clinical outcome. Therefore, choosing the right moment for weaning and extubation is essential. Electrical Impedance Tomography (EIT) is a promising innovative lung monitoring technique, but its role in supporting weaning decisions is yet uncertain. We aimed to evaluate physiological trends during a T-piece spontaneous breathing trail (SBT) as measured with EIT and the relation between EIT parameters and SBT success or failure. Methods: This is an observational study in which twenty-four adult patients receiving mechanical ventilation performed an SBT. EIT monitoring was performed around the SBT. Multiple EIT parameters including the end-expiratory lung impedance (EELI), delta Tidal Impedance (ΔZ), Global Inhomogeneity index (GI), Rapid Shallow Breathing Index (RSBIEIT), Respiratory Rate (RREIT) and Minute Ventilation (MVEIT) were computed on a breath-by-breath basis from stable tidal breathing periods. Results: EELI values dropped after the start of the SBT (p < 0.001) and did not recover to baseline after restarting mechanical ventilation. The ΔZ dropped (p < 0.001) but restored to baseline within seconds after restarting mechanical ventilation. Five patients failed the SBT, the GI (p = 0.01) and transcutaneous CO2 (p < 0.001) values significantly increased during the SBT in patients who failed the SBT compared to patients with a successful SBT. Conclusion: EIT has the potential to assess changes in ventilation distribution and quantify the inhomogeneity of the lungs during the SBT. High lung inhomogeneity was found during SBT failure. Insight into physiological trends for the individual patient can be obtained with EIT during weaning from mechanical ventilation, but its role in predicting weaning failure requires further study.
AB - Background: Prolonged weaning from mechanical ventilation is associated with poor clinical outcome. Therefore, choosing the right moment for weaning and extubation is essential. Electrical Impedance Tomography (EIT) is a promising innovative lung monitoring technique, but its role in supporting weaning decisions is yet uncertain. We aimed to evaluate physiological trends during a T-piece spontaneous breathing trail (SBT) as measured with EIT and the relation between EIT parameters and SBT success or failure. Methods: This is an observational study in which twenty-four adult patients receiving mechanical ventilation performed an SBT. EIT monitoring was performed around the SBT. Multiple EIT parameters including the end-expiratory lung impedance (EELI), delta Tidal Impedance (ΔZ), Global Inhomogeneity index (GI), Rapid Shallow Breathing Index (RSBIEIT), Respiratory Rate (RREIT) and Minute Ventilation (MVEIT) were computed on a breath-by-breath basis from stable tidal breathing periods. Results: EELI values dropped after the start of the SBT (p < 0.001) and did not recover to baseline after restarting mechanical ventilation. The ΔZ dropped (p < 0.001) but restored to baseline within seconds after restarting mechanical ventilation. Five patients failed the SBT, the GI (p = 0.01) and transcutaneous CO2 (p < 0.001) values significantly increased during the SBT in patients who failed the SBT compared to patients with a successful SBT. Conclusion: EIT has the potential to assess changes in ventilation distribution and quantify the inhomogeneity of the lungs during the SBT. High lung inhomogeneity was found during SBT failure. Insight into physiological trends for the individual patient can be obtained with EIT during weaning from mechanical ventilation, but its role in predicting weaning failure requires further study.
KW - EIT
KW - Electrical Impedance Tomography
KW - Spontaneous breathing trial
KW - Weaning
UR - http://www.scopus.com/inward/record.url?scp=85191449230&partnerID=8YFLogxK
U2 - 10.1186/s12931-024-02801-6
DO - 10.1186/s12931-024-02801-6
M3 - Article
C2 - 38664685
AN - SCOPUS:85191449230
SN - 1465-9921
VL - 25
JO - Respiratory Research
JF - Respiratory Research
IS - 1
M1 - 179
ER -