TY - JOUR
T1 - Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films
AU - Ma, Ming
AU - Hansen, Heine A.
AU - Valenti, Marco
AU - Wang, Zegao
AU - Cao, Anping
AU - Dong, Mingdong
AU - Smith, Wilson A.
N1 - Accepted Author Manuscript
PY - 2017
Y1 - 2017
N2 - The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO intermediates, influenced by the surface electronic structure (d-band center energy) which is linked to the surface composition of the bimetallic films. Notably, a gradual shift of the d-band center away from the Fermi level was observed with increasing Au content, which correspondingly reduces the binding strength of the COOH and CO intermediates, leading to the distinct catalytic activity for the reduction of CO2 on the compositionally variant Au-Pt bimetallic films. In addition, the formation of formic acid in the bimetallic systems at reduced overpotentials and higher yield indicates that synergistic effects can facilitate reaction pathways for products that are not accessible with the individual components.
AB - The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO intermediates, influenced by the surface electronic structure (d-band center energy) which is linked to the surface composition of the bimetallic films. Notably, a gradual shift of the d-band center away from the Fermi level was observed with increasing Au content, which correspondingly reduces the binding strength of the COOH and CO intermediates, leading to the distinct catalytic activity for the reduction of CO2 on the compositionally variant Au-Pt bimetallic films. In addition, the formation of formic acid in the bimetallic systems at reduced overpotentials and higher yield indicates that synergistic effects can facilitate reaction pathways for products that are not accessible with the individual components.
KW - Au-Pt alloy thin films
KW - Bimetallic catalysts
KW - CO conversion
KW - Electrocatalysis
UR - http://resolver.tudelft.nl/uuid:3cf628b4-a4ba-4b45-81bb-72b71850f2d1
UR - http://www.scopus.com/inward/record.url?scp=85032196494&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2017.09.043
DO - 10.1016/j.nanoen.2017.09.043
M3 - Article
AN - SCOPUS:85032196494
SN - 2211-2855
VL - 42
SP - 51
EP - 57
JO - Nano Energy
JF - Nano Energy
ER -