Electronic Coupling of Highly Ordered Perovskite Nanocrystals in Supercrystals

Yingying Tang, Deepika Poonia, Marco Van Der Laan, Dolf Timmerman, Sachin Kinge, Laurens D.A. Siebbeles, Peter Schall*

*Corresponding author for this work

Research output: Contribution to journalReview articleScientificpeer-review

8 Downloads (Pure)

Abstract

Assembled perovskite nanocrystals (NCs), known as supercrystals (SCs), can have many exotic optical and electronic properties different from the individual NCs due to energy transfer and electronic coupling in the dense superstructures. We investigate the optical properties and ultrafast carrier dynamics of highly ordered SCs and the dispersed NCs by absorption, photoluminescence (PL), and femtosecond transient absorption (TA) spectroscopy to determine the influence of the assembly on the excitonic properties. Next to a red shift of absorption and PL peak with respect to the individual NCs, we identify signatures of the collective band-like states in the SCs. A smaller Stokes shift, decreased biexciton binding energy, and increased carrier cooling rates support the formation of delocalized states as a result of the coupling between the individual NC states. These results open perspectives for assembled perovskite NCs for application in optoelectronic devices, with design opportunities exceeding the level of NCs and bulk materials.

Original languageEnglish
Number of pages8
JournalACS Applied Energy Materials
DOIs
Publication statusPublished - 2021

Keywords

  • assembly
  • carrier dynamics
  • coupling
  • nanocrystals
  • perovskite
  • supercrystals

Fingerprint

Dive into the research topics of 'Electronic Coupling of Highly Ordered Perovskite Nanocrystals in Supercrystals'. Together they form a unique fingerprint.

Cite this