Electrostatic instability of micro-plates subjected to differential pressure: A semi-analytical approach

Banafsheh Sajadi*, Hans Goosen, Fred van Keulen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)
34 Downloads (Pure)


Electrostatic instability is one of the main features of many electrostatic MEMS and NEMS devices. In this paper, we investigate how the electrostatic instability of a plate-like electrode can be affected by a differential pressure. The results of this study indicate that the presence of differential pressure can have a significant influence on the equilibrium path, the number and location of unstable points, and the post-instability behavior. As a result, while the system is loaded and unloaded electrically, the electrostatic instability might lead to a snapping behavior. The noticed snapping behavior of a flat plate makes it very appealing for sensing and actuating applications. This study is based on both a semi-analytical framework and finite element simulations. The proposed analytical solution is shown to be accurate enough to be used as an effective tool for design.

Original languageEnglish
Pages (from-to)210-218
JournalInternational Journal of Mechanical Sciences
Publication statusPublished - 2018


  • Bi-stability
  • Electrostatic instability
  • Micro-plate
  • Nonlocal elasticity
  • Pull-in
  • Snap-through


Dive into the research topics of 'Electrostatic instability of micro-plates subjected to differential pressure: A semi-analytical approach'. Together they form a unique fingerprint.

Cite this