Enabling Robust Radar-based Localization and Vital Signs Monitoring in Multipath Propagation Environments

Marco Mercuri, Yiting Lu, Salvatore Polito, Fokko Wieringa, Alle-Jan van der Veen, Chris Van Hoof, Tom Torfs

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
2 Downloads (Pure)

Abstract

Objective: Over the last two decades, radar-based contactless monitoring of vital signs (heartbeat and respiration rate) has raised increasing interest as an emerging and added value to health care. However, until now, the flaws caused by indoor multipath propagation formed a fundamental hurdle for the adoption of such technology in practical healthcare applications where reliability and robustness are crucial. Multipath reflections, originated from one person, combine with the direct signals and multipaths of other people and stationary objects, thus jeopardizing individual vital signs extraction and localization. This work focuses on tackling indoor multipath propagation. Methods: We describe a methodology, based on accurate models of the indoor multipaths and of the radar signals, that enables separating the undesired multipaths from desired signals of multiple individuals, removing a key obstacle to real-world contactless vital signs monitoring and localization. Results: We also demonstrated it by accurately measure individual heart rates, respiration rates, and absolute distances (range information) of paired volunteers in a challenging real-world office setting. Conclusion: The approach, validated using a frequency-modulated continuous wave (FMCW) radar, was shown to function in an indoor environment where radar signals are severely affected by multipath reflections. Significance: Practical applications arise for health care, assisted living, geriatric and quarantine medicine, rescue and security purposes.

Original languageEnglish
Pages (from-to)3228 - 3240
Number of pages13
JournalIEEE Transactions on Biomedical Engineering
Volume68
Issue number11
DOIs
Publication statusPublished - 2021

Keywords

  • Array signal model
  • biomedical applications
  • contactless
  • Doppler
  • frequency-modulated continuous wave
  • localization
  • multipath
  • remote radar sensing
  • single-input and single-output radar
  • vital signs monitoring

Fingerprint

Dive into the research topics of 'Enabling Robust Radar-based Localization and Vital Signs Monitoring in Multipath Propagation Environments'. Together they form a unique fingerprint.

Cite this