TY - JOUR
T1 - Energy security in community energy systems
T2 - An agent-based modelling approach
AU - Fouladvand, Javanshir
AU - Ghorbani, Amineh
AU - Sarı, Yasin
AU - Hoppe, Thomas
AU - Kunneke, Rolf
AU - Herder, Paulien
PY - 2022
Y1 - 2022
N2 - In community energy systems, the energy demand of a group of households is met by collectively generated electricity and heat from renewable energy sources. What makes these systems unique is their collective and collaborative form of organization and their distributed energy generation. While these features are crucial to the resilience of these systems and are beneficial for the sustainable energy transition in general, they may at the same time undermine the security of energy within these systems. This paper takes a comprehensive view of the energy security of community energy systems by considering dimensions such as energy price, environment and availability, which are all impacted by decentralized and collective means of energy generation and distribution. The study analyses community energy systems' technical and institutional characteristics that influence their energy security. An agent-based modelling approach is used for the first time to study energy security, focusing on thermal energy communities given the considerable share of thermal energy applications such as heating, cooling, and hot tap water. The simulation results articulate that energy communities are capable of contributing to the energy security of individual households. Results demonstrated the substantial potential of energy communities in CO2 emissions reduction (60% on average) while being affordable in the long run. In addition, the results show the importance of project leadership (particularly regarding the municipality) concerning energy security performances. Finally, the results reveal that the amount of available subsidy and natural gas prices are relatively more effective for ensuring high energy security levels than CO2 taxes.
AB - In community energy systems, the energy demand of a group of households is met by collectively generated electricity and heat from renewable energy sources. What makes these systems unique is their collective and collaborative form of organization and their distributed energy generation. While these features are crucial to the resilience of these systems and are beneficial for the sustainable energy transition in general, they may at the same time undermine the security of energy within these systems. This paper takes a comprehensive view of the energy security of community energy systems by considering dimensions such as energy price, environment and availability, which are all impacted by decentralized and collective means of energy generation and distribution. The study analyses community energy systems' technical and institutional characteristics that influence their energy security. An agent-based modelling approach is used for the first time to study energy security, focusing on thermal energy communities given the considerable share of thermal energy applications such as heating, cooling, and hot tap water. The simulation results articulate that energy communities are capable of contributing to the energy security of individual households. Results demonstrated the substantial potential of energy communities in CO2 emissions reduction (60% on average) while being affordable in the long run. In addition, the results show the importance of project leadership (particularly regarding the municipality) concerning energy security performances. Finally, the results reveal that the amount of available subsidy and natural gas prices are relatively more effective for ensuring high energy security levels than CO2 taxes.
KW - Agent-based modelling
KW - Collective action
KW - Energy community
KW - Energy security
KW - Institutional analysis and development
KW - Thermal energy system
UR - http://www.scopus.com/inward/record.url?scp=85134336073&partnerID=8YFLogxK
U2 - 10.1016/j.jclepro.2022.132765
DO - 10.1016/j.jclepro.2022.132765
M3 - Article
AN - SCOPUS:85134336073
VL - 366
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
SN - 0959-6526
M1 - 132765
ER -