Engineered living composite materials

I.H.M.S. Nettersheim, N.S. Guevara Sotelo, J.C. Verdonk, K. Masania*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

6 Downloads (Pure)

Abstract

Since the inception of fibre-reinforced composite materials, they have been widely acknowledged for their unparalleled weight-to-performance ratio. Nonetheless, concerns are escalating regarding the environmental impact of these materials amidst global warming and pollution. This perspective explores a ground-breaking shift towards harnessing living organisms to produce composite materials. Living composites not only offer sustainable, carbon-capturing alternatives but also afford an unprecedented level of control over shape and anisotropy. Recent advancements in biology, particularly genetic engineering and sequencing, have provided extraordinary control over living organisms. Coupled with ever-evolving additive manufacturing techniques, these breakthroughs enable the construction of engineered living materials from the ground up. Here, we explore the key factors propelling the emergence of engineered living materials for structural applications and delves into the capabilities of living organisms that can be harnessed for creating functional materials, including harvesting energy, forming structures, sensing/adapting, growing and remodelling. Incorporating living organisms can revolutionise manufacturing for renewable and sustainable composite materials, unlocking previously unattainable functionalities.

Original languageEnglish
Article number110758
Number of pages17
JournalComposites Science and Technology
Volume256
DOIs
Publication statusPublished - 2024

Keywords

  • Additive manufacturing
  • Biologically inspired materials
  • Engineered living materials
  • Sustainable composite materials

Fingerprint

Dive into the research topics of 'Engineered living composite materials'. Together they form a unique fingerprint.

Cite this