TY - JOUR
T1 - Enhanced isobutanol recovery from fermentation broth for sustainable biofuels production
AU - Janković, Tamara
AU - Straathof, Adrie J.J.
AU - Kiss, Anton A.
PY - 2024
Y1 - 2024
N2 - Isobutanol is a highly attractive renewable alternative to conventional fossil fuels, with superior fuel properties as compared to ethanol and 1-butanol. Even though the isobutanol production by fermentation has significant potential, complex downstream processing is limiting the wide-spreading of this technology. Accordingly, this original research significantly contributes to the advancement in industrial biofuel production by developing two eco-efficient downstream processes for the industrial-scale recovery of isobutanol (production capacity 50 ktonneIBUT/y), from a highly dilute fermentation broth (>98 wt% water). Vacuum distillation and a novel hybrid combination of gas stripping and vacuum evaporation were coupled with atmospheric azeotropic distillation to recover over 99.9 % of isobutanol as a high-purity product (100 wt%). Advanced heat pumping and heat integration techniques were further implemented to allow the complete electrification of these recovery processes. Furthermore, implementation of these techniques significantly decreased total annual costs (0.131–0.161 $/kgIBUT), reduced energy requirements (0.488–0.807 kWeh/kgIBUT) and lowered CO2 emissions (0.303–0.449 kgCO2/kgIBUT), resulting in highly competitive purification processes. In addition to efficiently recovering isobutanol, the designed downstream processes provide the potential to enhance the fermentation process by recycling all present microorganisms and reducing water demand. Therefore, the results of this original research substantially contribute to the advancement in industrial biotechnology and the wide-spreading of biofuel production.
AB - Isobutanol is a highly attractive renewable alternative to conventional fossil fuels, with superior fuel properties as compared to ethanol and 1-butanol. Even though the isobutanol production by fermentation has significant potential, complex downstream processing is limiting the wide-spreading of this technology. Accordingly, this original research significantly contributes to the advancement in industrial biofuel production by developing two eco-efficient downstream processes for the industrial-scale recovery of isobutanol (production capacity 50 ktonneIBUT/y), from a highly dilute fermentation broth (>98 wt% water). Vacuum distillation and a novel hybrid combination of gas stripping and vacuum evaporation were coupled with atmospheric azeotropic distillation to recover over 99.9 % of isobutanol as a high-purity product (100 wt%). Advanced heat pumping and heat integration techniques were further implemented to allow the complete electrification of these recovery processes. Furthermore, implementation of these techniques significantly decreased total annual costs (0.131–0.161 $/kgIBUT), reduced energy requirements (0.488–0.807 kWeh/kgIBUT) and lowered CO2 emissions (0.303–0.449 kgCO2/kgIBUT), resulting in highly competitive purification processes. In addition to efficiently recovering isobutanol, the designed downstream processes provide the potential to enhance the fermentation process by recycling all present microorganisms and reducing water demand. Therefore, the results of this original research substantially contribute to the advancement in industrial biotechnology and the wide-spreading of biofuel production.
KW - Biofuels
KW - Dividing-wall column
KW - Downstream processing
KW - Gas stripping with vacuum evaporation
KW - Industrial biotechnology
KW - Isobutanol
UR - http://www.scopus.com/inward/record.url?scp=85181659291&partnerID=8YFLogxK
U2 - 10.1016/j.ecmx.2023.100520
DO - 10.1016/j.ecmx.2023.100520
M3 - Article
AN - SCOPUS:85181659291
SN - 2590-1745
VL - 21
JO - Energy Conversion and Management: X
JF - Energy Conversion and Management: X
M1 - 100520
ER -