Enhanced Strain Measurement Sensitivity with Gold Nanoparticle-Doped Distributed Optical Fibre Sensing

Xiang Wang, Yuzhe Xiao, Calvin Rans, Rinze Benedictus, Roger M. Groves*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

19 Downloads (Pure)

Abstract

Nanoparticle- (NP-) doped optical fibres show the potential to increase the signal-to-noise ratio and thus the sensitivity of optical fibre strain detection for structural health monitoring. In this paper, our previous experimental/simulation study is extended to a design study for strain monitoring. 100 nm spherical gold NPs were randomly seeded in the optical fibre core to increase the intensity of backscattered light. Backscattered light spectra were obtained in different wavelength ranges around the infrared C-band and for different gauge lengths. Spectral shift values were obtained by cross-correlation of the spectra before and after strain change. The results showed that the strain accuracy has a positive correlation with the relative spectral sensitivity and that the strain precision decreases with increasing noise. Based on the simulated results, a formula for the sensitivity of the NP-doped optical fibre sensor was obtained using an aerospace case study to provide realistic strain values. An improved method is proposed to increase the accuracy of strain detection based on increasing the relative spectral sensitivity, and the results showed that the error was reduced by about 50%, but at the expense of a reduced strain measurement range and more sensitivity to noise. These results contribute to the better application of NP-doped optical fibres for strain monitoring.

Original languageEnglish
Article number2716156
Number of pages16
JournalStructural Control and Health Monitoring
Volume2024
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Enhanced Strain Measurement Sensitivity with Gold Nanoparticle-Doped Distributed Optical Fibre Sensing'. Together they form a unique fingerprint.

Cite this