Entropic uncertainty and measurement reversibility

Mario Berta, Stephanie Wehner, Mark M. Wilde

Research output: Contribution to journalArticleScientificpeer-review

42 Citations (Scopus)
14 Downloads (Pure)

Abstract

The entropic uncertainty relation with quantum side information (EUR-QSI) from (Berta et al 2010 Nat. Phys. 6 659) is a unifying principle relating two distinctive features of quantum mechanics: quantum uncertainty due to measurement incompatibility, and entanglement. In these relations, quantum uncertainty takes the form of preparation uncertainty where one of two incompatible measurements is applied. In particular, the ‘uncertainty witness’ lower bound in the UR-QSI is not a function of a post-measurement state. An insightful proof of the EUR-QSI from (Coles et al 2012 Phys. Rev. Lett. 108 210405) makes use of a fundamental mathematical consequence of the postulates of quantum mechanics known as the non-increase of quantum relative entropy under quantum channels. Here, we exploit this perspective to establish a tightening of the EUR-QSI which adds a new state-dependent term in the lower bound, related to how well one can reverse the action of a quantum measurement. As such, this new term is a direct function of the postmeasurement state and can be thought of as quantifying how much disturbance a given measurement causes. Our result thus quantitatively unifies this feature of quantum mechanics with the others mentioned above.Wehave experimentally tested our theoretical predictions on the IBM quantum experience and find reasonable agreement between our predictions and experimental outcomes.
Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalNew Journal of Physics
Volume18
DOIs
Publication statusPublished - 2016

Keywords

  • uncertainty principle
  • quantum relative entropy
  • measurement reversibility

Fingerprint Dive into the research topics of 'Entropic uncertainty and measurement reversibility'. Together they form a unique fingerprint.

  • Cite this