Abstract
Uncertainty quantification remains a difficult challenge in reinforcement learning. Several algorithms exist that successfully quantify uncertainty in a practical setting. However it is unclear whether these algorithms are theoretically sound and can be expected to converge. Furthermore, they seem to treat the uncertainty in the target parameters in different ways. In this work, we unify several practical algorithms into one theoretical framework by defining a new Bellman operator on distributions, and show that this Bellman operator is a contraction. We highlight use cases of our framework by analyzing an existing Bayesian Q-learning algorithm, and also introduce a novel uncertainty-aware variant of PPO that adaptively sets its clipping hyperparameter.
Original language | English |
---|---|
Pages (from-to) | 20973-20981 |
Number of pages | 9 |
Journal | Proceedings of the AAAI Conference on Artificial Intelligence |
Volume | 39 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2025 |
Event | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States Duration: 25 Feb 2025 → 4 Mar 2025 https://aaai.org/conference/aaai/aaai-25/ |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.