Estimation and reduction of random noise in mass anomaly time-series from satellite gravity data by minimization of month-to-month year-to-year double differences

Pavel Ditmar, Natthachet Tangdamrongsub, Jiangjun Ran*, Roland Klees

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)
33 Downloads (Pure)

Abstract

We propose a technique to regularize a GRACE-based mass-anomaly time-series in order to (i) quantify the Standard Deviation (SD) of random noise in the data, and (ii) reduce the level of that noise. The proposed regularization functional minimizes the Month-to-month Year-to-year Double Differences (MYDD) of mass anomalies. As such, it does not introduce any bias in the linear trend and the annual component, two of the most common features in GRACE-based mass anomaly time-series. In the context of hydrological and ice sheet studies, the proposed regularization functional can be interpreted as an assumption about the stationarity of climatological conditions. The optimal regularization parameter and noise SD are obtained using Variance Component Estimation. To demonstrate the performance of the proposed technique, we apply it to both synthetic and real data. In the latter case, two geographic areas are considered: the Tonlé Sap basin in Cambodia and Greenland. We show that random noise in the data can be efficiently (1.5–2 times) mitigated in this way, whereas no noticeable bias is introduced. We also discuss various findings that can be made on the basis of the estimated noise SD. We show, among others, that knowledge of noise SD facilitates the analysis of differences between GRACE-based and alternative estimates of mass variations. Moreover, inaccuracies in the latter can also be quantified in this way. For instance, we find that noise in the surface mass anomalies in Greenland estimated using the Regional Climate Model RACMO2.3 is at the level of 2–6 cm equivalent water heights. Furthermore, we find that this noise shows a clear correlation with the amplitude of annual mass variations: it is lowest in the north-west of Greenland and largest in the south. We attribute this noise to limitations in the modelling of the meltwater accumulation and run-off.

Original languageEnglish
Pages (from-to)9-22
Number of pages14
JournalJournal of Geodynamics
Volume119
DOIs
Publication statusPublished - 1 Sept 2018

Keywords

  • GRACE
  • Greenland Ice Sheet
  • Mass transport
  • Tikhonov regularization
  • Tonlé Sap
  • Variance Component Estimation

Fingerprint

Dive into the research topics of 'Estimation and reduction of random noise in mass anomaly time-series from satellite gravity data by minimization of month-to-month year-to-year double differences'. Together they form a unique fingerprint.

Cite this