TY - JOUR
T1 - Evaluating the Synergy of Conflict Detection and Resolution Services for Constrained Urban Airspace
AU - Badea, Calin Andrei
AU - Vidosavljevic, Andrija
AU - Ellerbroek, Joost
AU - Hoekstra, Jacco
PY - 2025
Y1 - 2025
N2 - Very-low-level (VLL) urban air operations have been extensively investigated as a solution for mitigating congestion in cities. However, the manner in which the management of such traffic should be performed is still actively investigated. One important component of such a system is the conflict detection and resolution (CD&R), mainly composed of the strategic and tactical CD&R module. While many approaches towards these have been studied, insufficient analysis has been conducted on their compatibility when functioning within a unified, hybrid system. Additionally, their robustness to operational uncertainties such as wind and departure delays is often overlooked. In this work, we investigate the performance of strategic planing methods when combined with tactical CD&R and subjected to a wide range of traffic demand levels and uncertainty conditions. Simulations indicate that the performance of the strategic deconfliction module is highly sensitive to the presence of wind and delay. This decline in performance is partially mitigated by the tactical deconfliction module. Thus, the results suggest that increased use of tactical CD&R could lessen the required level of detail of strategic deconfliction methods, leading to improved compatibility between the two modules.
AB - Very-low-level (VLL) urban air operations have been extensively investigated as a solution for mitigating congestion in cities. However, the manner in which the management of such traffic should be performed is still actively investigated. One important component of such a system is the conflict detection and resolution (CD&R), mainly composed of the strategic and tactical CD&R module. While many approaches towards these have been studied, insufficient analysis has been conducted on their compatibility when functioning within a unified, hybrid system. Additionally, their robustness to operational uncertainties such as wind and departure delays is often overlooked. In this work, we investigate the performance of strategic planing methods when combined with tactical CD&R and subjected to a wide range of traffic demand levels and uncertainty conditions. Simulations indicate that the performance of the strategic deconfliction module is highly sensitive to the presence of wind and delay. This decline in performance is partially mitigated by the tactical deconfliction module. Thus, the results suggest that increased use of tactical CD&R could lessen the required level of detail of strategic deconfliction methods, leading to improved compatibility between the two modules.
KW - CD&R
KW - strategic
KW - tactical
KW - U-space
KW - urban air mobility
KW - UTM
UR - http://www.scopus.com/inward/record.url?scp=85215579771&partnerID=8YFLogxK
U2 - 10.1109/OJITS.2025.3530516
DO - 10.1109/OJITS.2025.3530516
M3 - Article
AN - SCOPUS:85215579771
SN - 2687-7813
VL - 6
SP - 24
EP - 36
JO - IEEE Open Journal of Intelligent Transportation Systems
JF - IEEE Open Journal of Intelligent Transportation Systems
ER -