Evaluating XAI: A comparison of rule-based and example-based explanations

Jasper van der Waa*, Elisabeth Nieuwburg, Anita Cremers, Mark Neerincx

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

118 Citations (Scopus)
92 Downloads (Pure)


Current developments in Artificial Intelligence (AI) led to a resurgence of Explainable AI (XAI). New methods are being researched to obtain information from AI systems in order to generate explanations for their output. However, there is an overall lack of valid and reliable evaluations of the effects on users' experience of, and behavior in response to explanations. New XAI methods are often based on an intuitive notion what an effective explanation should be. Rule- and example-based contrastive explanations are two exemplary explanation styles. In this study we evaluate the effects of these two explanation styles on system understanding, persuasive power and task performance in the context of decision support in diabetes self-management. Furthermore, we provide three sets of recommendations based on our experience designing this evaluation to help improve future evaluations. Our results show that rule-based explanations have a small positive effect on system understanding, whereas both rule- and example-based explanations seem to persuade users in following the advice even when incorrect. Neither explanation improves task performance compared to no explanation. This can be explained by the fact that both explanation styles only provide details relevant for a single decision, not the underlying rational or causality. These results show the importance of user evaluations in assessing the current assumptions and intuitions on effective explanations.

Original languageEnglish
Article number103404
Number of pages19
JournalArtificial Intelligence
Publication statusPublished - 2021


  • Artificial Intelligence (AI)
  • Contrastive explanations
  • Decision support systems
  • Explainable Artificial Intelligence (XAI)
  • Machine learning
  • User evaluations


Dive into the research topics of 'Evaluating XAI: A comparison of rule-based and example-based explanations'. Together they form a unique fingerprint.

Cite this