Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part I - Tank pressure window based on progressive failure analysis

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

Understanding of the thermal and mechanical behaviour of conformal tanks when utilized in cryogenic fuel storage is considered crucial in the hypersonic aircraft sector. This behaviour is strongly dependent on the way the tank itself is designed. This study focuses on the effect of design on the performance of an innovative Type IV multi-spherical composite-overwrapped pressure vessel at both ambient and cryogenic conditions. A method to evaluate the required number of reinforcement rings at the intersections and thus avoid damage in those regions under pressurization is outlined. A thermo-mechanical FE-based model coupled with a progressive failure analysis (PFA) algorithm enables to evaluate the pressure window of the multi-sphere at ambient conditions. Additionally, a transient analysis -included in this study-is used to determine the different heat transfer mechanisms, temperature and strain evolution at the tank wall throughout cryogenic operation (chill-down, pressure cycling and purging). The temperature dependency of the tank wall materials is obtained by coupon testing and fitting functions and is hereby incorporated in the analysis. The most important outcome here is the absence of damage in the composite overwrap at cryogenic environments; this may be considered as a positive indication about the suitability of the Type IV multi-spherical COPVs for cryogenic storage.
Original languageEnglish
Pages (from-to)3917-3930
Number of pages14
JournalInternational Journal of Hydrogen Energy
Volume44
Issue number7
DOIs
Publication statusPublished - 2019

Keywords

  • Cryogenic storage
  • Multi-cell tank
  • Progressive failure analysis

Fingerprint Dive into the research topics of 'Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part I - Tank pressure window based on progressive failure analysis'. Together they form a unique fingerprint.

  • Cite this