Abstract
In this paper, the performance of the sparse reconstruction (SR) and the delay-and-sun (DAS) methods for damage localization, were evaluated for various environmental and operational conditions, both numerically and experimentally. To assess these damage localization methods, a methodology based on the Taguchi method was used to make the experimental design, and a modified performance-index was defined to represent the quality of reconstructed images. Then, the robustness and the accuracy of each method, in a well-defined performance region relevant to in-service aerospace structures, were investigated using the Taguchi and analysis of variance methods. It was concluded that for the defined conditions, the robustness of the delay and sum method is better than the sparse reconstruction method for uncontrolled factors. However, the sparse reconstruction method is more robust to poor baseline subtraction than the delay and sum method, while the delay and sum method was more robust to factors that lead to a model mismatch. These results provide additional insight into the design of reliable accurate structural health monitoring systems. The outcomes of this work can be used in future reaserch into SHM imaging techniques.
Original language | English |
---|---|
Article number | 108495 |
Journal | Measurement: Journal of the International Measurement Confederation |
Volume | 169 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Delay-and-sum
- Guided lamb wave
- Sparse reconstruction
- Structural health monitoring
- Taguchi method