TY - JOUR
T1 - Evidence of Stress Control on Dissolution Cavity Growth Along Heterogeneous Field-Scale Fractures From Coupled Hydro-Mechanical-Chemical Modeling
AU - Jiang, Chuanyin
AU - Wang, Xiaoguang
AU - Lei, Qinghua
AU - Liu, Lijun
AU - Song, Guofeng
AU - Jourde, Hervé
PY - 2025
Y1 - 2025
N2 - We develop a new coupled hydro-mechanical-chemical (HMC) model to investigate the stress-controlled evolution of dissolution cavities along a hectometer-scale heterogeneous fracture. The fracture is conceptualized to consist of numerous patches associated with spatially-variable, stress and dissolution-dependent local stiffnesses and apertures. We consider the complete coupling relationships among mechanical deformation, fluid flow, and chemical dissolution within the fracture. More specifically, our model captures non-linear fracture deformational responses and their consequences on localized flow pattern and dissolutional aperture growth, as well as the feedback of dissolution to mechanical weakening and stress redistribution. We elucidate how geomechanical processes affect the aperture and flow patterns and the formation of small to large dissolution cavities. Our simulation results show that stress retards the permeability increase with the extent of retardation positively related to a dimensionless penetration length lp′. Stress induces the splitting of the dissolution front, promoting localized flow and branched dissolution. At low lp′ (wormhole dissolution regime), stress also promotes the sustained growth of dissolution branches. Hence, there is no apparent increase in global flow heterogeneity. At high lp′, stress transitions the system from uniform dissolution into wormhole formation. Wormholes initiate from remote stiffer regions and converge toward the inlet. Our results have important implications for understanding various dissolution phenomena in subsurface fractured rocks, ranging from karstification to reservoir acidization.
AB - We develop a new coupled hydro-mechanical-chemical (HMC) model to investigate the stress-controlled evolution of dissolution cavities along a hectometer-scale heterogeneous fracture. The fracture is conceptualized to consist of numerous patches associated with spatially-variable, stress and dissolution-dependent local stiffnesses and apertures. We consider the complete coupling relationships among mechanical deformation, fluid flow, and chemical dissolution within the fracture. More specifically, our model captures non-linear fracture deformational responses and their consequences on localized flow pattern and dissolutional aperture growth, as well as the feedback of dissolution to mechanical weakening and stress redistribution. We elucidate how geomechanical processes affect the aperture and flow patterns and the formation of small to large dissolution cavities. Our simulation results show that stress retards the permeability increase with the extent of retardation positively related to a dimensionless penetration length lp′. Stress induces the splitting of the dissolution front, promoting localized flow and branched dissolution. At low lp′ (wormhole dissolution regime), stress also promotes the sustained growth of dissolution branches. Hence, there is no apparent increase in global flow heterogeneity. At high lp′, stress transitions the system from uniform dissolution into wormhole formation. Wormholes initiate from remote stiffer regions and converge toward the inlet. Our results have important implications for understanding various dissolution phenomena in subsurface fractured rocks, ranging from karstification to reservoir acidization.
KW - dissolution
KW - field-scale fracture
KW - HMC coupling
KW - stress
UR - http://www.scopus.com/inward/record.url?scp=85219103249&partnerID=8YFLogxK
U2 - 10.1029/2024JB029901
DO - 10.1029/2024JB029901
M3 - Article
AN - SCOPUS:85219103249
SN - 2169-9313
VL - 130
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 2
M1 - e2024JB029901
ER -