Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS

Chrysoula Ioannidou, Alfonso Navarro-López, Arjan Rijkenberg, Robert M. Dalgliesh, Sebastian Koelling, Catherine Pappas, Jilt Sietsma, Ad A. van Well, S.E. Offerman

Research output: Contribution to journalArticleScientificpeer-review

Abstract

In-situ Small-Angle Neutron Scattering (SANS) is used to determine the time evolution of the chemical composition of precipitates at 650 °C and 700 °C in three micro-alloyed steels with different vanadium (V) and carbon (C) concentrations. Precipitates with a distribution of substoichiometric carbon-to-metal ratios are measured in all steels. The precipitates are initially metastable with a high iron (Fe) content, which is gradually being substituted by vanadium during isothermal annealing. Eventually a plateau in the composition of the precipitate phase is reached. Faster changes in the precipitate chemical composition are observed at the higher temperature in all steels because of the faster vanadium diffusion at 700 °C. At both temperatures, the addition of more vanadium and more carbon to the steel has an accelerating effect on the evolution of the precipitate composition as a result of a higher driving force for precipitation. Addition of vanadium to the nominal composition of the steel leads to more vanadium rich precipitates, with less iron and a smaller carbon-to-metal ratio. Atom Probe Tomography (APT) shows the presence of precipitates with a distribution of carbon-to-metal ratios, ranging from 0.75 to 1, after 10 h of annealing at 650 °C or 700 °C in all steels. These experimental results are coupled to ThermoCalc equilibrium calculations and literature findings to support the Small-Angle Neutron Scattering results.

Original languageEnglish
Pages (from-to)217-230
JournalActa Materialia
Volume201
DOIs
Publication statusPublished - 2020

Keywords

  • Atom Probe Tomography
  • chemical composition evolution
  • in-situ Small-Angle Neutron Scattering
  • vanadium carbides
  • vanadium micro-alloyed steels

Fingerprint Dive into the research topics of 'Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS'. Together they form a unique fingerprint.

Cite this