Abstract
Recent research in artificial intelligence potentially provides solutions to the challenging problem of fault-tolerant and robust flight control. This paper proposes a novel Safety-Informed Evolutionary Reinforcement Learning algorithm (SERL), which combines Deep Reinforcement Learning (DRL) and neuroevolution to optimize a population of nonlinear control policies. Using SERL, the work has trained agents to provide attitude tracking on a high-fidelity nonlinear fixed-wing aircraft model. Compared to a state-of-the-art DRL solution, SERL achieves better tracking performance in nine out of ten cases, remaining robust against faults and changes in flight conditions, while providing smoother action signals.
Original language | English |
---|---|
Pages (from-to) | 887-900 |
Number of pages | 14 |
Journal | Journal of Guidance, Control, and Dynamics |
Volume | 47 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.