Abstract
Nonlinear modes are a well investigated concept in dynamical systems theory, extending the celebrated modal analysis of linear mechanical systems to nonlinear ones. The present work moves a first step in the direction of combining control theory and nonlinear modal analysis towards the implementation of hyper-efficient oscillatory behaviors in mechanical systems with non-Euclidean metric. Rather than forcing a prescribed evolution, we first investigate the regular behaviors that can be autonomously expressed by the system, and then we design a controller that excites them. A first implementation of this concept is proposed, analyzed, and tested in simulation.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2021 American Control Conference, ACC 2021 |
Place of Publication | Piscataway, NJ, USA |
Publisher | IEEE |
Pages | 8-13 |
ISBN (Electronic) | 978-1-6654-4197-1 |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 American Control Conference, ACC 2021 - Virtual, New Orleans, United States Duration: 25 May 2021 → 28 May 2021 |
Conference
Conference | 2021 American Control Conference, ACC 2021 |
---|---|
Country/Territory | United States |
City | Virtual, New Orleans |
Period | 25/05/21 → 28/05/21 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Control applications
- Flexible structures
- PID control
- Robotics
- Stability of nonlinear systems