Exciton-to-trion conversion as a control mechanism for valley polarization in room-temperature monolayer WS2

Research output: Contribution to journalArticleScientificpeer-review

3 Downloads (Pure)

Abstract

Transition metal dichalcogenide (TMD) monolayers are two-dimensional semiconductors with two valleys in their band structure that can be selectively addressed using circularly polarized light. Their photoluminescence spectrum is characterized by neutral and charged excitons (trions) that form a chemical equilibrium governed by the net charge density. Here, we use chemical doping to drive the conversion of excitons into trions in WS 2 monolayers at room temperature, and study the resulting valley polarization via photoluminescence measurements under valley-selective optical excitation. We show that the doping causes the emission to become dominated by trions with a strong valley polarization associated with rapid non-radiative recombination. Simultaneously, the doping results in strongly quenched but highly valley-polarized exciton emission due to the enhanced conversion into trions. A rate equation model explains the observed valley polarization in terms of the doping-controlled exciton-trion equilibrium. Our results shed light on the important role of exciton-trion conversion on valley polarization in monolayer TMDs.

Original languageEnglish
Article number17389
JournalScientific Reports
Volume10
Issue number1
DOIs
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'Exciton-to-trion conversion as a control mechanism for valley polarization in room-temperature monolayer WS<sub>2</sub>'. Together they form a unique fingerprint.

Cite this