Abstract
In various stereological problems ann-dimensional convex body is intersected with an(n−1)-dimensionalIsotropic Uniformly Random (IUR) hyperplane. In this paper the cumulative distribution function associatedwith the(n−1)-dimensional volume of such a random section is studied. This distribution is also knownas chord length distribution and cross section area distribution in the planar and spatial case respectively.For various classes of convex bodies it is shown that these distribution functions are absolutely continuouswith respect to Lebesgue measure. A Monte Carlo simulation scheme is proposed for approximating thecorresponding probability density functions.
Original language | English |
---|---|
Pages (from-to) | 171-184 |
Number of pages | 14 |
Journal | Image Analysis and Stereology |
Publication status | Published - 2023 |
Keywords
- absolute continuity
- chord length distribution
- cross section area distribution
- stereology