Experimental and analytical studies on shear behaviors of FRP-concrete composite sections

Xingxing Zou, Peng Feng, Yi Bao, Jingquan Wang, Haohui Xin

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

The design of FRP profile-concrete composite sections, including beams and decks, is usually governed by the shear strength of the FRP profiles. However, analytical methods that can precisely predict the shear capacity of the composite sections have not been well developed, because there is lack of knowledge of the FRP-concrete composite action and distribution of shear stress along the FRP. This paper investigates the shear behaviors of FRP-concrete composite sections and develops formulae to predict the shear capacity of the composite sections. First, flexural tests of three FRP-concrete composite beams were conducted to investigate the shear failure mode and interface behaviors. All the beams failed in FRP shear fracture along horizontal direction. Then, push-out tests were used to determine the slip property for the FRP-concrete interface which reveals that FRP stay-in-place form and steel bolts can ensure full and partial composite action, respectively. Based on the experimental study, closed-form equations to compute the maximum shear stress are derived and validated against experimental data in this paper and literature. Finally, simple yet reliable equations of shear capacity are derived and recommended for engineers to design the FRP-concrete composite sections.

Original languageEnglish
Article number110649
Number of pages13
JournalEngineering Structures
Volume215
DOIs
Publication statusPublished - 2020

Keywords

  • Composite action
  • FRP-concrete composite sections
  • Shear capacity
  • Shear connection
  • Slip effect

Fingerprint Dive into the research topics of 'Experimental and analytical studies on shear behaviors of FRP-concrete composite sections'. Together they form a unique fingerprint.

  • Cite this