Experimental determination of the effect of bow shape on the wave drift load

Anne Boorsma, Kees Aalbers, Riaan Van 't Veer, René Huijsmans

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

In the last forty years wave drift loads have been calculated with methods based on the near-field theory (hull pressure integration, Pinkster [4]) and/or the far field method (linear momentum theory). Both methods use linear theory and through its formulation ignore the ship's hull form above the mean water line. It is evident that in survival sea-states the small motion assumptions are violated and the hull form above the mean water line can affect the motion characteristics of the ship and the drift loads. In order to get more insight in this effect, SBM has conducted a systematic model test campaign at the TU Delft using an Aframax size tanker. The campaign included tests with two different bow shapes: the original bow with flare, and a wall-sided bow. Horizontal loads on the complete vessel and a section of the bow only were measured accompanied by measurements of the ship motions and relative wave heights. Measurements were performed for various wave heights and periods. Numerous repeat tests were conducted to establish the confidence level of the measurement data. Measurements have shown motions and relative wave heights are dependent on wave height. It was suggested that viscous damping may play a part in this. The relative wave height in high waves is affected by bow shape; namely the finite draft, the flare and the bulb. How this departure from linear theory affects the forces on the vessel should be investigated further.
Original languageEnglish
Title of host publicationProceedings ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
Subtitle of host publicationVolume 1: Offshore Technology
Place of PublicationNew York, NY, USA
PublisherASME
Number of pages10
ISBN (Electronic)978-0-7918-5763-2
DOIs
Publication statusPublished - 2017
EventOMAE 2017: ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering - Trondheim, Norway
Duration: 25 Jun 201730 Jun 2017

Publication series

NameASME Conference Proceedings
Volume1: Offshore Technology

Conference

ConferenceOMAE 2017: ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
Country/TerritoryNorway
CityTrondheim
Period25/06/1730/06/17

Bibliographical note

Paper No. OMAE2017-61361

Fingerprint

Dive into the research topics of 'Experimental determination of the effect of bow shape on the wave drift load'. Together they form a unique fingerprint.

Cite this