Experimental investigation and thermodynamic modelling assessment of the AECl2–NdCl3 (AE = Sr, Ba) systems

D.C. Alders, D.J. Cette, R. Konings, A.L. Smith*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Downloads (Pure)

Abstract

The thermodynamic and thermo-physical properties of the binary salt systems AECl2–NdCl3 (AE = Sr, Ba) have been investigated using an experimental and modelling approach. The binary salt systems both include a single intermediate salt, i.e. Sr9Nd5Cl33 and Ba3Nd2Cl12, respectively. The structure of these intermediates has been investigated with X-ray diffraction (XRD). Furthermore, these systems exhibit mutual solubility of NdCl3 in BaCl2 and SrCl2. The investigation of these solid solutions has been performed using quenching experiments and subsequent post-characterisation by XRD. Phase diagram equilibria have also been investigated using differential scanning calorimetry (DSC). Using the aforementioned information on phase transitions, intermediate compound formation, and solid solubility, thermodynamic assessment of the systems has been performed using the CALPHAD method. The model for the Gibbs energy of the liquid solution is the quasi-chemical formalism in the quadruplet approximation, while the model for the Gibbs energy of the solid solutions is the two-sublattice polynomial model.
Original languageEnglish
Pages (from-to)24041-24057
Number of pages17
JournalPhysical chemistry chemical physics (PCCP)
Volume26
Issue number36
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Experimental investigation and thermodynamic modelling assessment of the AECl2–NdCl3 (AE = Sr, Ba) systems'. Together they form a unique fingerprint.

Cite this